Probabilistic Parsing Action Models for Multi-Lingual Dependency Parsing

نویسندگان

  • Xiangyu Duan
  • Jun Zhao
  • Bo Xu
چکیده

Deterministic dependency parsers use parsing actions to construct dependencies. These parsers do not compute the probability of the whole dependency tree. They only determine parsing actions stepwisely by a trained classifier. To globally model parsing actions of all steps that are taken on the input sentence, we propose two kinds of probabilistic parsing action models that can compute the probability of the whole dependency tree. The tree with the maximal probability is outputted. The experiments are carried on 10 languages, and the results show that our probabilistic parsing action models outperform the original deterministic dependency parser.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Probabilistic Models for Action-Based Chinese Dependency Parsing

Action-based dependency parsing, also known as deterministic dependency parsing, has often been regarded as a time efficient parsing algorithm while its parsing accuracy is a little lower than the best results reported by more complex parsing models. In this paper, we compare actionbased dependency parsers with complex parsing methods such as all-pairs parsers on Penn Chinese Treebank. For Chin...

متن کامل

Adaptation of Data and Models for Probabilistic Parsing of Portuguese

We present the first results for recovering word-word dependencies from a probabilistic parser for Portuguese trained on and evaluated against human annotated syntactic analyses. We use the Floresta Sintá(c)tica with the Bikel multi-lingual parsing engine and evaluate performance on both PARSEVAL and unlabeled dependencies. We explore several configurations, both in terms of parameterizing the ...

متن کامل

Unsupervised Dependency Parsing with Transferring Distribution via Parallel Guidance and Entropy Regularization

We present a novel approach for inducing unsupervised dependency parsers for languages that have no labeled training data, but have translated text in a resourcerich language. We train probabilistic parsing models for resource-poor languages by transferring cross-lingual knowledge from resource-rich language with entropy regularization. Our method can be used as a purely monolingual dependency ...

متن کامل

A Representation Learning Framework for Multi-Source Transfer Parsing

Cross-lingual model transfer has been a promising approach for inducing dependency parsers for lowresource languages where annotated treebanks are not available. The major obstacles for the model transfer approach are two-fold: 1. Lexical features are not directly transferable across languages; 2. Target languagespecific syntactic structures are difficult to be recovered. To address these two c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007